A Object-Oriented Spatial-Temporal Model for Dynamic Transit Networks

Zhong-Ren Peng, Ph.D.
Department of Urban Planning
Zpeng@uwm.edu
Ruihong Huang

Department of Geography
University of Wisconsin—Milwaukee

Dynamic Transit Network

- Transit service (routing and level of services) is time dependent,
- Common bus line issue,
- One bus stop serving multiple routes,
- Transit transfers depend on the arrival time of another bus,
- Express service bypassing normal stops.

Problems with the ER Model

- Difficult to maintain,
- Difficult to find error,
- Difficult to update,
- Data integration is not automatic (lots of data islands and lost data),
- Slow Performance.

Why Object-oriented Model?

- Easier to handle dynamic changes of transit routes.
 - Different time have different properties (layouts and directions and services).
- Easier to update and maintain transit networks.
 - Easier to add, delete routes, route segments and stop locations.
 - A change in a route or route segment will not change the relationship with its upper-layer objects, therefore, all changes on the sublevel will be automatically updated for the whole network objects.
- Greater performance than the entity-relational data model.

Adding a Route Object

- A linear object.
- What is the start and end of the route (set route direction)?
- What is the traversal of the route?
- What Network in the timemap?

Adding a Stop Object

- A point object.
- What stop group?
- What route or routes does it associate with?
- Is it a transfer node?

Deleting a Route Object

- Delete a traversal.
- Delete those stops that are associated with it but are not associated with any other routes.
- Reconstruct the transfer nodes.
- Update the network.

Deleting a Stop Object Delete the stop. Update the stop group database. Update the stop sequence database. Update the transfer node database.

Measuring Arrival Time
Variability and Probability
$$p_{i} = p_{i-1} + \frac{b_{2}-T+i\Delta t}{b_{2}-T+(i-1)\Delta t} P_{a}(t) dt \frac{e_{2}}{b_{2}+i\Delta t} P_{d}(t) dt$$

$$\mathbf{OR}$$

$$p_{i} = p_{i-1} + \frac{b_{2}-T+i\Delta t}{b_{2}-T+(i-1)\Delta t} P_{a}(t) dt (1 - \frac{b_{2}+i\Delta t}{b_{2}} P_{d}(t) dt)$$

CONCLUSIONS

- The Spatial-Temporal model captures the dynamic nature of transit networks.
- The object-oriented data model design simplifies data management and maintenance.
- The object-oriented approach increase the efficiency of network analysis, including spatial search, query, and shortest path finding.